Chandra Peers Into Halo Surrounding Milky Way Galaxy

By  //  March 23, 2014

Loading the player ...
Share on Facebook Share on Twitter Share on LinkedIn Share on Delicious Digg This Stumble This

X-Ray Telescope Confirms Gas Shroud

ABOVE VIDEO: Chandra observed eight bright X-ray sources located far beyond the galaxy at distances of hundreds of millions of light-years. The data revealed X-rays from these distant sources are absorbed selectively by oxygen ions in the vicinity of the galaxy. The scientists determined the temperature of the absorbing halo is between 1 million and 2.5 million kelvins, or a few hundred times hotter than the surface of the sun.

BREVARD COUNTY • KENNEDY SPACE CENTER, FLORIDA – Astronomers have used NASA’s Chandra X-ray Observatory to find evidence our Milky Way galaxy is embedded in an enormous halo of hot gas that extends for hundreds of thousands of light years.

The estimated mass of the halo is comparable to the mass of all the stars in the galaxy.

NASA’s Chandra X-ray observatory has confirmed that the Milky way galaxy is surrounded by a mass of hot gas. (Image courtesy NASA/ESA)

If the size and mass of this gas halo is confirmed, it also could be an explanation for what is known as the “missing baryon” problem for the galaxy.

Baryons are particles, such as protons and neutrons, that make up more than 99.9 percent of the mass of atoms found in the cosmos. Measurements of extremely distant gas halos and galaxies indicate the baryonic matter present when the universe was only a few billion years old represented about one-sixth the mass and density of the existing unobservable, or dark, matter.

In the current epoch, about 10 billion years later, a census of the baryons present in stars and gas in our galaxy and nearby galaxies shows at least half the baryons are unaccounted for.

In a recent study, a team of five astronomers used data from Chandra, the European Space Agency’s XMM-Newton space observatory and Japan’s Suzaku satellite to set limits on the temperature, extent and mass of the hot gas halo.

In a 2013 study, a team of five astronomers used data from Chandra, the European Space Agency’s XMM-Newton space observatory and Japan’s Suzaku satellite to set limits on the temperature, extent and mass of the hot gas halo. Chandra observed eight bright X-ray sources located far beyond the galaxy at distances of hundreds of millions of light-years.

The data revealed X-rays from these distant sources are absorbed selectively by oxygen ions in the vicinity of the galaxy. The scientists determined the temperature of the absorbing halo is between 1 million and 2.5 million kelvins, or a few hundred times hotter than the surface of the sun.

NASA workers prepare to place the Chandra X-ray observatory in the cargo bed of Space Shuttle Columbia prior to its launch in space in July 1999. (Image courtesy NASA)

New research

Other studies have shown that the Milky Way and other galaxies are embedded in warm gas with temperatures between 100,000 and 1 million kelvins. Studies have indicated the presence of a hotter gas with a temperature greater than 1 million kelvins.

This new research provides evidence the hot gas halo enveloping the Milky Way is much more massive than the warm gas halo.

“We know the gas is around the galaxy, and we know how hot it is,” said Anjali Gupta, lead author of The Astrophysical Journal paper describing the research.

“The big question is, how large is the halo, and how massive is it?”

Anjali Gupta

Anjali Gupta

To begin to answer this question, the authors supplemented Chandra data on the amount of absorption produced by the oxygen ions with XMM-Newton and Suzaku data on the X-rays emitted by the gas halo. They concluded that the mass of the gas is equivalent to the mass in more than 10 billion suns, perhaps as large as 60 billion suns.

Smita Mathur

Smita Mathur

“Our work shows that, for reasonable values of parameters and with reasonable assumptions, the Chandra observations imply a huge reservoir of hot gas around the Milky Way,” said co-author Smita Mathur of Ohio State University in Columbus.

“It may extend for a few hundred thousand light-years around the Milky Way or it may extend farther into the surrounding local group of galaxies. Either way, its mass appears to be very large.”

The estimated mass depends on factors such as the amount of oxygen relative to hydrogen, which is the dominant element in the gas. Nevertheless, the estimation represents an important step in solving the case of the missing baryons, a mystery that has puzzled astronomers for more than a decade.

“Our work shows that, for reasonable values of parameters and with reasonable assumptions, the Chandra observations imply a huge reservoir of hot gas around the Milky Way.” Smita Mathur of Ohio State University

Although there are uncertainties, the work by Gupta and colleagues provides the best evidence yet that the galaxy’s missing baryons have been hiding in a halo of million-kelvin gas that envelopes the galaxy. The estimated density of this halo is so low that similar halos around other galaxies would have escaped detection.

The paper describing these results was published in the Sept. 1 issue of The Astrophysical Journal. Other co-authors were Yair Krongold of Universidad Nacional Autonoma de Mexico in Mexico City; Fabrizio Nicastro of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.; and Massimiliano Galeazzi of University of Miami in Coral Gables, Fla.

Other studies have shown that the Milky Way and other galaxies are embedded in warm gas, with temperatures between 100,000 and one million degrees, and there have been indications that a hotter component with a temperature greater than a million degrees is also present. This new research provides evidence that the mass in the hot gas halo enveloping the Milky is much greater than that of the warm gas.

NASA’s Chandra X-ray observatory has provided evidence that our Milky Way Galaxy is embedded in an enormous halo of hot gas that extends for hundreds of thousands of light years. (Image courtesy NASA/CXC)

Specialized telescope

NASA’s Chandra X-ray Observatory is a telescope specially designed to detect X-ray emission from very hot regions of the Universe such as exploded stars, clusters of galaxies, and matter around black holes.

Because X-rays are absorbed by Earth’s atmosphere, Chandra must orbit above it, up to an altitude of 86,500 miles in space. The Smithsonian’s Astrophysical Observatory in Cambridge, Mass., hosts the Chandra X-ray Center which operates the satellite.

NASA’s Chandra X-ray Observatory, which was launched and deployed by Space Shuttle Columbia on July 23, 1999 and is managed by NASA’s Marshall Space Flight Center. (NASA image)

NASA’s Chandra X-ray Observatory, which was launched and deployed by Space Shuttle Columbia on July 23, 1999 and is managed by NASA’s Marshall Space Flight Center. (NASA image)

Chandra carries four very sensitive mirrors nested inside each other. The energetic X-rays strike the insides of the hollow shells and are focussed onto electronic detectors at the end of the 30-foot optical bench.

Depending on which detector is used, very detailed images or spectra of the cosmic source can be made and analyzed.

Chandra has imaged the spectacular, glowing remains of exploded stars, and taken spectra showing the dispersal of elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way, and found black holes across the Universe.

Chandra has imaged the spectacular, glowing remains of exploded stars, and taken spectra showing the dispersal of elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way, and found black holes across the Universe.

Chandra has traced the separation of dark matter from normal matter in the collision of galaxies in a cluster and is contributing to both dark matter and dark energy studies. As its mission continues, Chandra will continue to discover startling new science about our high-energy Universe.

NASA’s Chandra X-ray Observatory, which was launched and deployed by Space Shuttle Columbia on July 23, 1999 and is managed by NASA’s Marshall Space Flight Center.


Click here to contribute your news or announcements Free