NASA’s Artemis 1 Moon Shot is ‘Go’ for Monday Morning Launch from Kennedy Space Center

By  //  August 29, 2022

NASA Artemis 1 launch has two-hour launch window, will open at 8:33 a.m. local time

Artemis 1 will launch its Orion capsule on a 42-day mission to circle the moon and return to Earth – NASA’s first mission back to the moon with a crew-capable spacecraft in almost 50 years. Orion will take about a week to reach lunar orbit and then stay for about a month before returning to Earth on Oct. 10. (NASA image)

ARTEMIS 1 MISSION PLAN

■ Perigee Raise Maneuver – ICPS burn to raise Orion’s altitude at the point in the orbit where the spacecraft is nearest the Earth, known as its perigee, to ensure the spacecraft does not reenter the Earth’s atmosphere

■ Trans-lunar Injection Burn – ICPS burn to increase Orion’s speed from 17,500 mph to 22,600 mph to escape the pull of Earth’s gravity for a precise trajectory to the Moon

■ Outbound Powered Fly-by Burn – service module burn to send Orion close enough to the lunar surface to leverage the Moon’s gravitational force and direct the spacecraft toward entry into a lunar distant retrograde orbit

■ Distant Retrograde Orbit Entry Burn – service module burn to enter lunar orbit and stabilize the spacecraft in the distant retrograde orbit

■ Distant Retrograde Orbit Exit Burn – service module burn to exit lunar orbit and direct Orion to a second close lunar flyby

■ Return Powered Fly-by Burn – service module burn to send Orion close enough to the lunar surface for a gravity assist from the Moon to slingshot Orion on a trajectory back to intercept the Earth’s atmosphere in preparation for reentry

■ Entry and splashdown – the service module will separate from Orion just before re-entry, and the reaction control system engines will orient the crew module’s heat shield into the direction of travel to prepare for peak heating followed by a parachute-assisted splashdown in the ocean.

■ Passes Apollo 13 distance record – 248,654 miles

■ Max distance from Earth – approximately 280,000 miles

The much anticipated Artemis 1 moon mission blastoff is set for Monday from Kennedy Space Center Launch Pad Pad 39B, with a two-hour launch window that will open at 8:33 a.m. local time. (NASA image)

BREVARD COUNTY • KENNEDY SPACE CENTER, FLORIDA – The much anticipated Artemis 1 moon mission blastoff is set for Monday from Kennedy Space Center Launch Pad 39B, with a two-hour launch window that will open at 8:33 a.m. local time.

NASA has planned three opportunities to launch Artemis 1 in its current flight window, which opens on Aug. 29. The backup days are Sept. 2 and Sept. 5.

Artemis 1 will launch its Orion capsule on a 42-day mission to circle the moon and return to Earth – NASA’s first mission back to the moon with a crew-capable spacecraft in almost 50 years.

Orion will take about a week to reach lunar orbit and then stay for about a month before returning to Earth on Oct. 10.

The first crewed flight will be Artemis 2, which NASA plans to launch sometime in 2024. Artemis 3 will then be the first Artemis moon landing with a crew in 2025 and will use a SpaceX Starship to land astronauts on the moon’s south pole.

All eyes will be on the historic Launch Complex 39B when the Orion spacecraft and the Space Launch System (SLS) rocket lift off for the first time from NASA’s Kennedy Space Center in Florida.

Artemis I will be the first in a series of increasingly complex missions to build a long-term human presence at the Moon for decades to come.

Mission Quick Facts:

■ Launch site: Launch Pad 39B at NASA’s Kennedy Space Center in Florida

■ Launch date: Aug. 29, 2022

■ Launch window: 8:33 a.m. EDT to 10:33 a.m.

■ Mission Duration: 42 days, 3 hours, 20 minutes

■ Destination: distant retrograde orbit around the Moon

■ Total mission miles: approximately 1.3 million miles

■ Targeted splashdown site: Pacific Ocean, off the coast of San Diego

■ Return speed: Up to 25,000 mph

■ Splashdown: Oct. 10, 2022

Artemis I is the first integrated test of NASA’s deep space exploration systems: the Orion spacecraft, Space Launch System (SLS) rocket and the ground systems at the agency’s Kennedy Space Center in Florida.

The first in a series of increasingly complex missions, Artemis I is an uncrewed flight test that will provide a foundation for human deep space exploration and demonstrate our commitment and capability to return humans to the Moon and extend beyond.

During this flight, Orion will launch atop the most powerful rocket in the world and fly farther than any spacecraft built for humans has ever flown.

Over the course of the mission, it will travel 280,000 miles from Earth and 40,000 miles beyond the far side of the Moon. Orion will stay in space longer than any human spacecraft has without docking to a space station and return home faster and hotter than ever before.

This first Artemis mission will demonstrate the performance of both Orion and the SLS rocket and test capabilities to orbit the Moon and return to Earth. The flight will pave the way for future missions to the lunar vicinity, including landing the first woman and first person of color on the surface of the Moon.

With Artemis I, NASA sets the stage for human exploration into deep space, where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth, including Mars. With Artemis, NASA will collaborate with industry and international partners to establish long-term exploration for the first time.

LAUNCH

Artemis I Launch with ocean view
SLS and Orion will blast off from Launch Pad 39B at NASA’s modernized spaceport at Kennedy. Propelled by a pair of five-segment boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within 90 seconds. (NASA image)

SLS and Orion will blast off from Launch Pad 39B at NASA’s modernized spaceport at Kennedy. Propelled by a pair of five-segment boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within 90 seconds.

The solid rocket boosters will burn through their propellant and separate after approximately two minutes, and the core stage and RS-25s will deplete the propellant after approximately eight minutes.

After jettisoning the boosters, service module panels, and launch abort system, the core stage engines will shut down and the core stage will separate from the spacecraft, leaving Orion attached to the interim cryogenic propulsion stage (ICPS) that will propel it toward the Moon.

As the spacecraft makes an orbit of Earth and deploys its solar arrays, the ICPS will give Orion the big push it needs to leave Earth’s orbit and travel toward the Moon. This maneuver, known as the trans-lunar injection, precisely targets a point about the Moon that will guide Orion close enough to be captured by the Moon’s gravity.

IN SPACE

Orion capsule in orbit around moon
Orion will separate from the ICPS approximately two hours after launch. The ICPS will then deploy ten small satellites, known as CubeSats, along the way to study the Moon or head father out to deep space destinations. (NASA image)

Orion will separate from the ICPS approximately two hours after launch. The ICPS will then deploy ten small satellites, known as CubeSats, along the way to study the Moon or head father out to deep space destinations.

As Orion continues on its path from Earth orbit to the Moon, it will be propelled by a service module provided by ESA (European Space Agency) that will course-correct as needed along the way. The service module supplies the spacecraft’s main propulsion system and power.

The outbound trip to the Moon will take several days, during which time engineers will evaluate the spacecraft’s systems.

Orion will fly about 60 miles above the surface of the Moon at its closest approach and then use the Moon’s gravitational force to propel Orion into a distant retrograde orbit, traveling about 40,000 miles past the Moon.

This distance is 30,000 miles farther than the previous record set during Apollo 13 and the farthest in space any spacecraft built for humans has flown.

For its return trip to Earth, Orion will get another gravity assist from the Moon as it does a second close flyby, firing engines at precisely the right time to harness the Moon’s gravity and accelerate back toward Earth, setting itself on a trajectory to re-enter our planet’s atmosphere.

OCEAN LANDING

orion capsule with three parachutes
The mission will end with a test of Orion’s capability to return safely to Earth. The spacecraft will make a precise landing within the eyesight of the recovery ship off the coast of San Diego. (NASA image)

The mission will end with a test of Orion’s capability to return safely to Earth. Orion will enter Earth’s atmosphere traveling at about 25,000 mph. Earth’s atmosphere will slow the spacecraft down to a speed of about 300 mph, producing temperatures of approximately 5,000 degrees Fahrenheit  and testing the heat shield’s performance.

Once the spacecraft has passed this extreme heating phase of flight, the forward bay cover that protects its parachutes will be jettisoned. Orion’s two drogue parachutes deploy first, at 25,000 feet, and within a minute slow Orion to about 100 mph before being released.

They are followed by three pilot parachutes that pull out the three main parachutes, which will slow Orion’s descent to less than 20 mph. The spacecraft will make a precise landing within the eyesight of the recovery ship off the coast of San Diego.

RECOVERY OPERATIONS

orion capsule recovery at sea
The Landing and Recovery Team, led by NASA’s Exploration Ground Systems program at Kennedy, will be responsible for safely recovering the capsule after splashdown. (NASA image)

The Landing and Recovery Team, led by NASA’s Exploration Ground Systems program at Kennedy, will be responsible for safely recovering the capsule after splashdown.

The interagency landing and recovery team consist of personnel and assets from the U.S. Department of Defense, including Navy amphibious specialists and Air Force weather specialists, and engineers and technicians from Kennedy, Johnson Space Center in Houston, and Lockheed Martin Space Operations.

Before splashdown, the team will head out to sea on a Navy ship. At the direction of the NASA Recovery Director, Navy divers and other team members in several inflatable boats will be cleared to approach Orion.

Divers will then attach a cable to the spacecraft and pull it by winch into a specially designed cradle inside the ship’s well deck. The vessel will transport the spacecraft and other hardware to a pier at U.S. Naval Base San Diego for transport to Kennedy.

Open water personnel will also work to recover Orion’s forward bay cover and three main parachutes. If teams are able to recover the jettisoned cover and parachutes, engineers will inspect the hardware and gather additional performance data.